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Abstract
The ability to quantify the uncertainty in the pre-
diction of a Bayesian deep learning model has sig-
nificant practical implications—from more robust
machine-learning based systems to more effective
expert-in-the loop processes. While several gen-
eral measures of model uncertainty exist, they are
often intractable in practice when dealing with
high dimensional data such as long sequences.
Instead, researchers often resort to ad hoc ap-
proaches or to introducing independence assump-
tions to make computation tractable. We intro-
duce a principled approach to estimate uncertainty
in high dimensions that circumvents these chal-
lenges, and demonstrate its benefits in de novo
molecular design.

1 Introduction

To understand when one can rely on a model’s output, and ul-
timately build trust in AI systems, we must be able to qualify
the model’s prediction with a notion of uncertainty. For ex-
ample, machine-learning based pathology detection systems
are progressively being deployed in healthcare. Knowing
when the model is uncertain about its prediction allows for
practitioners to confidently let the machine handle the easier
cases (low model uncertainty), and have more time to ded-
icate to the more complex cases (high model uncertainty).
Such measures of model uncertainty are already used in
practice with low dimensional outputs (Filos et al., 2019),
but their estimation in high-dimensional domains (e.g., large
complex images, long natural language sequences, biolog-
ical sequences) is often impractical due to the size of the
corresponding space. Existing approaches to estimating un-
certainty with structured high dimensional data either make
use of ad hoc techniques (Xiao et al., 2019), or make sim-
plifying assumptions such as independence of the output
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dimensions (e.g., elements in a sequence are assumed to be
independent of each other, (Malinin and Gales, 2020)).

In this paper we:
• Review existing methods to quantify model uncertainty

and illustrate their limitations in the case of high di-
mensional data (§2);

• Introduce principled estimators to circumvent these
limitations and obtain reliable uncertainty estimates in
high dimensions (§3);

• Illustrate the benefits from these approaches in a real-
world example in de novo molecular design (§4).

2 Background

The overall uncertainty of a model in a given region of the
input space can be broken down into two types of uncertainty
(Kendall and Gal, 2017):

• Epistemic uncertainty: Uncertainty due to lack of
knowledge about that region of the input space – the
posterior over model parameters is broad in that region
due to lack of information about it, and we can reduce
that uncertainty by collecting more data;

• Aleatoric uncertainty: Uncertainty due to inherent
stochasticity in the data in that region – amassing addi-
tional data would not further reduce that uncertainty.

Adopting a Bayesian viewpoint, the total uncertainty of
a model at an input point z is typically measured by the
predictive entropy, ie. the entropy of the predictive posterior
distribution P(y|z):

PE(z) = H(P (y|z)) =
∫
y

− lnP (y|z) ∗ P (y|z)dy (1)

If we denote q(θ) as the distribution over model parameters,
we can further decompose the predictive entropy as the sum
of two terms:

PE(z) = (H(P (y|z))− Eq(θ)(H(P (y|z, θ)))︸ ︷︷ ︸
Mutual information

+

Eq(θ)(H(P (y|z, θ)))︸ ︷︷ ︸
Expected entropy
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The first term – the Mutual information (MI) between
model parameters θ and the prediction y – is a measure of
epistemic uncertainty, as it quantifies the magnitude of the
change in model parameters that would result from observ-
ing y. If the model is quite uncertain about its prediction
for y, then the change in model coefficients from observing
y should be high. If the model is very certain about its
prediction for y, the model parameters will not vary much
from observing y:

MI(z) = H(P (y|z))− Eq(θ)(H(P (y|z, θ))) (3)

The second term – the Expected Entropy (EE) – is a mea-
sure of the residual uncertainty, ie. the aleatoric uncertainty:

EE(z) = Eq(θ)(H(P (y|z, θ))) (4)

When focusing on high dimensional problems, an exact
estimation of these different measures of uncertainty is im-
practical. Several approximations and heuristics have been
introduced to get around these challenges. The “softmax
variance”, i.e. the variance of predictions across model pa-
rameters, has been shown to work well in practice (Carlini
and Wagner, 2016; Feinman et al., 2017). Under certain
assumptions and using a Taylor expansion of the logarithm,
the Mutual information may be approximated by the soft-
max variance (Smith and Gal, 2018).

In the context of sequential data, the inherent structure in
the data generating process often introduces strong depen-
dencies between the output dimensions, e.g. the tokens in a
generated sentence. These dependencies can be ignored to
approximate the expressions above as the sum over tokens
of the token-level equivalent (Malinin and Gales, 2020).
For example, if we neglect the dependencies across tokens,
the predictive entropy for a sequence y = (y1, y2, ..., yL)
may be approximated as the sum of token-level predictive
entropies over the L tokens:

PE(z) = H(P (y|z)) =
L∑
l=1

EP (y|z)[logP (yl|z, yk<l)]

≈
L∑
l=1

EP (yl|z,yk<l)[logP (yl|z, yk<l)]

=

L∑
l=1

H(P (yl|z, yk<l)) (5)

for some fixed sequence y used in the conditionals.

While the above has been shown to work well in certain ex-
periments (Malinin and Gales, 2020), valuable information
is being discarded when we ignore dependencies across to-
kens (as we show below). Alternative approaches have been
suggested which make use of specialised tools in Natural
Language Processing such as the BLEU score (Xiao et al.,
2019), but these are difficult to extend to other domains.

3 Uncertainty in deep sequence models

In lieu of the aforementioned heuristics, we set out to es-
timate the expressions detailed in §2 via Monte Carlo es-
timations using importance sampling. Our scheme avoids
the analytically intractable sum over all possible outcomes,
which grows exponentially with sequence length. Further,
importance sampling with a smartly chosen importance dis-
tribution allows us to get a principled and practical approxi-
mation to the uncertainty measures. Let C be the number of
distinct possible values for y. We will approximate expec-
tations over model parameters by sampling T independent
models from q(θ).

3.1 Mutual information

We start by rewriting the MI as:
MI(z) = H(P (y|z))− Eq(θ)(H(P (y|z, θ))) (6a)

= −
C∑
j=1

p̂j ∗ ln(p̂j)) +
1

T

T∑
t=1

C∑
j=1

pjt ∗ ln(pjt) (6b)

=

C∑
j=1

(
1

T

T∑
t=1

pjt ∗ ln(pjt))− p̂j ∗ ln(p̂j)) (6c)

where p̂j and pjt are shorthands resp. for P (y = j|z) (the
posterior predictive distribution) and P (y = yj |z, θ = θt)
(prediction from with a given model parameter sample θt).

In high dimension, we can obtain a tractable approximation
via importance sampling:

MI(z) =

C∑
j=1

(
1

T

T∑
t=1

pjt ∗ ln(pjt))− p̂j ∗ ln(p̂j)) (7a)

=

C∑
j=1

f(yj)
1

p(yj |import.)
∗ p(yj |import.) (7b)

∝ Epimport.(f(y) ∗
1

pimport.
) (7c)

≈ 1

m

m∑
j=1

f(ŷj) ∗
1

pimport.(ŷj)
(7d)

with ŷj ∼ p(yj |import.) where p(yj |import.) is the prob-
ability of yj under the importance distribution and f(.) a
shorthand for the summand in the MI expression.

We choose the importance distribution to be the approximate
posterior predictive defined over the output sequences. We
generate sequences by sampling a set of parameters from the
approximate posterior, and then sampling a sequence from
a model defined by that set of parameters. This distribution
will sample mostly from regions with high density under
the posterior, regions with y which will have non-negligible
predictive probability for z to map to. This is in contrast to
a naive sum over all possible outcomes y, many of which
will have a negligible contribution to the sum.
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We obtain the following algorithm for assessing the mutual
information MI:

Algorithm 1 Compute Mutual information MI(z)

for j = 1 to m do
θ0 ∼ θ ;
Sample yj ∼ P(y|z,θ = θ0) ;
for t = 1 to T do

Sample a model θt ∼ θ;
Compute pjt = P (y = yj |z, θ = θt) ;

end for
Compute p̂j = 1

T

∑T
t=1 pjt (approx. posterior predic-

tive) ;
Compute fj = 1

T

∑T
t=1 pjt ∗ ln(pjt)− p̂j ∗ ln(p̂j) ;

end for
Return 1

m

∑m
j=1

fj
p̂j

Still, in high dimensions, the probability of most elements
yj will be small, and therefore we need to resort in prac-
tice to performing operations in the log space (e.g., using
the LogSumExp trick) to avoid numerical instability (see
Appendix for more details).

3.2 Expected entropy

Similarly, we can derive an algorithm to estimate the ex-
pected entropy:

Algorithm 2 Compute Expected entropy EE(z)

EE = 0
for t = 1 to T do

Sample a model θt ∼ θ
Sample yj ∼ P(y|z,θ = θt)
EE ← EE + (−log(pjt))

end for
Return EE/T

3.3 Predictive entropy

And in the same vain, we can derive an algorithm to estimate
the predictive entropy:

Algorithm 3 Compute Predictive entropy PE(z)

for j = 1 to m do
θ0 ∼ θ ;
Sample yj ∼ P(y|z,θ = θ0) ;
for t = 1 to T do

Sample a model θt ∼ θ ;
Compute pjt = P (y = yj |z, θ = θt) ;

end for
Compute p̂j = 1

T

∑T
t=1 pjt (approx. posterior predic-

tive) ;
Compute fj = −p̂j ∗ ln(p̂j) ;

end for
Return 1

m

∑m
j=1

fj
p̂j

= 1
m

∑m
j=1−ln(p̂j)

4 Experimental results

We illustrate the benefits from our estimator in a real-world
example in de novo molecular design.

4.1 Experimental setup

We study the structure of the molecular space where
each molecule is represented as a string of characters (its
“SMILES” representation). We adopt an approach similar to
(Gómez-Bombarelli et al., 2018), and jointly train a varia-
tional auto-encoder (VAE) along with a network predicting
the “QED” (a measure of “drug-likeness”) for each molecule
(the “Predictive VAE” framework). For the VAE model, the
encoder is a 4-layer bidirectional LSTM model and the de-
coder a 4-layer (unidirectional) GRU model, with dropout
in-between each layer. The training test data is comprised of
250k distinct molecules randomly extracted from the ZINC
database (Irwin et al., 2012). Each molecule is represented
as a (padded) sequence of up to 120 characters, selected
from an alphabet of cardinality 35. Consequently, we are in
the desired high dimensionality regime (35120). Additional
modeling details are provided in Appendix.

In the subsequent experiments, we leverage the measures of
uncertainty described above to quantify the uncertainty of
the decoder of the VAE model at a given position in latent.
These points come from 4 distinct sets:

1. Points from the training data, encoded in the latent
space;

2. Points from the test data, encoded in the latent space;

3. Points sampled at random from the VAE prior (standard
Gaussian);

4. Points sampled at random far from the VAE prior
(Gaussian with standard deviation of 10);

Intuitively we would like our measure of uncertainty to be
able to tell apart the points that are within the prior (i.e., any
of the first sets 1-3 above) Vs far from the prior.

Sampling a set of decoder parameters is achieved through
sampling a dropout mask for the decoder (Kendall and Gal,
2017). We randomly sample 10 distinct decoder masks for
each latent position (i.e., T=10) in the following experi-
ments.

While we evaluated Mutual Information, Expected Entropy
and Predictive entropy, we focus here on Mutual Informa-
tion as it delivered the best results to quantify the ability of
the decoder to distinguish between points in latent space
sampled form the prior Vs far from the prior (results for
Expected Entropy and Predictive Entropy are provided in
Appendix). We compare results obtained with our proposed
importance sampling algorithm with two baselines: Mu-
tual information computed as the sum of token-level mutual
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information (Malinin and Gales, 2020), and the softmax
variance heuristics.

4.2 Importance sampling

We looked at two different types of visualisations to assess
the different approaches to quantify uncertainty:

• Uncertainty histograms - representing the distribu-
tion of the uncertainty metric for the 4 different set
of points discussed above (e.g., training data, samples
from the prior);

• Performance plots - representing the average validity
of the decoded molecules (over 100 decodings for a
given point in latent) against the proportion of points
retained when rank ordering points by increasing value
of decoder uncertainty. The data for this experiment
was comprised of 50% of points sampled from the
prior, and 50% of points sampled far from the prior.
Average validity of decoded molecules near the prior
100%, and less than 1% far from the prior;

Figure 1. Uncertainty histogram - Importance sampling. The
distributions of uncertainty estimates for train data, test data and
points sampled from the prior all overlap and are disjoint from the
distribution of uncertainty for points sampled far from the prior

Our proposed algorithm based in importance sampling de-
livers the best results to properly estimate the mutual infor-
mation between prediction and model parameters (Figures
1 and 2). On the uncertainty histogram, the distribution of
uncertainty values for the first three sets of points (train data,
test data and samples from the prior) all overlap, and they
are disjoint from the distribution of uncertainty values for
samples far from the prior (all uncertainty values for points
far from the prior are strictly above the values near the prior).
When rank ordering points based on increasing uncertainty
value, the points near the prior get selected before any point
far from the prior, therefore the average validity of decoded
molecules is near 100% when looking at 50% of the points
with lowest uncertainty.

Figure 2. Performance plots. The importance sampling approach
properly separates points sampled from the prior Vs points sampled
far from the prior, hence why we obtain an average decoded validity
near 100% when selecting the 50% points with lowest uncertainty.
The approach based on the sum of token-level MI assigns very
low uncertainty to points far from the prior, leading to low average
validity (less than 1%) when selecting the 5% points with lowest
uncertainty. The approach based on softmax variance performs
even worse, assigning lower uncertainty to a majority of points far
from the prior compared to points from the prior.

4.3 Sum of token-level MI

Repeating the same experiment with the Mutual information
computed as the sum of token-level mutual information
baseline (Malinin and Gales, 2020), we find that the imposed
independence assumption hurts performance considerably
(Figure 2 and Appendix Figure 4). This estimator ends up
rejecting points the model is correct about, and retaining
points for which the model is incorrect.

4.4 Softmax variance

Similarly, the softmax variance, a popular uncertainty mea-
sure with categorical data, underperforms with sequence
data (Figure 2 and Appendix Figure 6).

5 Conclusion

We developed an importance-sampling based method to
estimate various measures of model uncertainty in the high
dimensional data setting, and demonstrated the advantages
of the method over traditional baselines and heuristics in an
experiment in de novo molecular design. In future work, the
ability to properly quantify when the decoder is uncertain
about its prediction could be used as the basis for a more
efficient search of new molecules in latent space under the
same “Predictive VAE” framework.
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Appendix

A LogSumExp trick

In the derivations for the Mutual information discussed in §3, we
use the following identities:

ln(exp(a)− exp(b)) = a+ ln(1− exp(b− a)) (8a)

ln(

T∑
t=0

ai) = ln(a0) + ln(1 +

T∑
t=1

exp(ln(ai)− ln(a0)))

(8b)

where a0 = maxi ai

B Modeling details

Encoder:

• LSTM network encoding SMILES representations of
molecules into latent space

• Dimensionality of the LSTM hidden state (at each layer):
500

• Number of LSTM layers: 4

• Dimensionality of latent space: 200

Decoder:

• GRU network (4-layer) generating SMILES based on latent
representation passed as the first hidden state to the GRU

• Dimensionality of the GRU hidden state (at each layer): 500

• Number of GRU layers: 4

• Dimensionality of latent space: 200

QED network:

• 3-layer DNN to predict QED score of latent state with:

• 2 hidden layer of 1500 units each

• Linear output layer (dimensionality of 1)
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C Additional experimental results

C.1 MI - Importance sampling

Figure 3. Correlation QED uncertainty Vs decoder uncer-
tainty - Importance sampling. Data comprised of 50% values in
prior and 50% far from prior. QED uncertainty is measured via
MC dropout (Gal and Ghahramani, 2015). We observe that the
Decoder uncertainty and QED uncertainty are highly correlated,
and that both assign high values (resp. low values) to points far
from the prior (resp. from the prior)

C.2 MI - Sum of token-level MI

Figure 4. Uncertainty histogram - MI as the sum of token-level
MI. About 10% of the points sampled far from the prior get
assigned an uncertainty estimate that is lower than that of any
point in the training/testing data and points sampled from the prior.

Figure 5. Correlation QED uncertainty Vs decoder uncer-
tainty - Sum of token-level MI. Data comprised of 50% values in
prior and 50% far from prior. QED uncertainty is measured via MC
dropout (Gal and Ghahramani, 2015). We observe a relatively high
correlation between the Decoder and QED uncertainty estimates,
although not as strong as via the approach based on importance
sampling.

C.3 Mutual Information (MI) - Softmax Variance

Figure 6. Uncertainty histogram - MI with Softmax Variance
approximation. A large proportion of points sampled far from the
prior ( 65%) get assigned an uncertainty value that is lower than
that of any point in the training/testing data and points sampled
from the prior.
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C.4 Expected Entropy (EE) - Importance sampling

Figure 7. Uncertainty histogram - Expected Entropy (EE) via
importance sampling. This uncertainty estimate does not allow
to discriminate between points sampled from the prior (or train-
ing/testing data points) and points sampled far from the prior.

C.5 Expected Entropy (EE) - Sum of token-level EE

Figure 8. Uncertainty histogram - Expected Entropy (EE) as
sum of token-level EE. This uncertainty estimate does not allow
to discriminate between points sampled from the prior (or train-
ing/testing data points) and points sampled far from the prior.

C.6 Predictive Entropy (PE) - Importance sampling

Figure 9. Uncertainty histogram - Predictive Entropy (PE) via
importance sampling. This uncertainty estimate provides good
separation between points sampled from the prior (or train-
ing/testing data points) and points sampled far from the prior,
although not as clear cut as the Mutual Information equivalent
(distributions have a relatively small overlap).

C.7 Predictive Entropy (PE) - Sum of token-level EE

Figure 10. Uncertainty histogram - Predictive Entropy (PE) as
sum of token-level EE. This uncertainty estimate does not allow
to discriminate between points sampled from the prior (or train-
ing/testing data points) and points sampled far from the prior.
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